MV-polytopes via affine buildings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mv-polytopes via Affine Buildings

For an algebraic group G, Anderson originally defined the notion of MV-polytopes in [And03], images of MV-cycles, defined in [MV07], under the moment map of the corresponding affine Grassmannian. It was shown by Kamnitzer in [Kam07] and [Kam05] that these polytopes can be described via tropical relations and give rise to a crystal structure on the set of MV-cycles. Another crystal structure can...

متن کامل

Rank 2 Affine Mv Polytopes

We give a realization of the crystal B(−∞) for ̂ sl2 using decorated polygons. The construction and proof are combinatorial, making use of Kashiwara and Saito’s characterization of B(−∞), in terms of the ∗ involution. The polygons we use have combinatorial properties suggesting they are the ̂ sl2 analogues of the Mirković-Vilonen polytopes defined by Anderson and the third author in finite type. ...

متن کامل

Preprojective Algebras and Mv Polytopes

The purpose of this paper is to apply the theory of MV polytopes to the study of components of Lusztig’s nilpotent varieties. Along the way, we introduce reflection functors for modules over the non-deformed preprojective algebra of a quiver.

متن کامل

Mv - Cycles and Mv - Polytopes in Type A

We study, in type A, the algebraic cycles (MV-cycles) discovered by I. Mirkovi´c and K. Vilonen [MV]. In particular, we partition the loop Grassmannian into smooth pieces such that the MV-cycles are their closures. We explicitly describe the points in each piece using the lattice model of the loop Grassmannian in type A. The partition is invariant under the action of the coweights and, up to th...

متن کامل

Mv - Cycles and Mv - Polytopes in Type A

We study, in type A, the algebraic cycles (MV-cycles) discovered by I. Mirkovi´c and K. Vilonen [MV]. In particular, we partition the loop Grassmannian into smooth pieces such that the MV-cycles are their closures. We explicitly describe the points in each piece using the lattice model of the loop Grassmannian in type A. The partition is invariant under the action of the coweights and, up to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2010

ISSN: 0012-7094

DOI: 10.1215/00127094-2010-062